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Abstract 

An algorithm is described for refining a set of phases to 
agree with the Sayre equation. All operations are carried 
out using Fourier transforms with modest computer-store 
requirements even for very large systems. The procedure 
is tested with two moderate-sized proteins, one contain- 
ing heavy atoms, and is found to give good refinement 
with data at more than atomic resolution (1.17.~) and 
useful, if lessogood, refinement when the data resolution 
is lower (1.5 A). It is concluded that at atomic resolution, 
or slightly below, the Sayre equation still has something 
to offer both for phase refinement and phase extension, 
especially if used cautiously with weighted multiple 
isomorphous replacement phases acting as a constraint 
on the phase changes. Even when the Sayre equation on 
its own refines phases badly, or not at all, it may still 
make an important contribution in conjunction with other 
real-space refinement procedures. 

Introduction 

Sayre (1952) showed that for an equal-atom structure a 
good set of phases, {~(h)}, associated with observed 
magnitudes of sufficiently high resolution satisfies the 
equations, 

F ( h ) = O ( h ) / V ~ F ( k ) F ( h - k ) ,  (1) 
k 

where, F ( h ) =  [F(h)lexp{@(h)}, 0(h) =f(h) /g(h) ,  
f (h)  = atomic scattering factor, g(h) = scattering factor 
for a squared atom and V = volume of the unit cell. 

It was shown by Shiono & Wooifson (1991) that 
Sayre's equation is reasonably well satisfied even when 
the condition of equal atoms does not hold or when there 
is less than atomic resolution. 

Sayre (1972) described a least-squares technique for 
phase refinement using (1) and tested it under somewhat 
idealized conditions. However, it was shown to be 
effective in extending the phases of rubredoxin from 2.5 
to 1.5A resolution (Sayre, 1974). A computational 
difficulty in this work arises from the problem of storing 
the Jacobian matrix involved in the linear equations for a 
large number of reflections. Sayre (1975) proposed that 
very large computational savings could be made by 
reducing all matrix operations to Fourier transforms. The 
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Sayre equation transformed into real space has been 
combined with several other real-space constraints in the 
phase extension and refinement (PER) procedure 
SQUASH (Zhang & Main, 1990ab; Cowtan & Main, 
1993). The present study concentrates on refining phases 
using a large system of Sayre equations by modifying 
phases while retaining the observed magnitudes. The 
procedure is illustrated by application to a 96 amino-acid 
protein, RNApl (Bezborodova, Ermekbaeva, Shlyap- 
nikov, Polyakov & Bezborodov, 1988), for which data is 
available at 1.17 ,~ resolution, and to 2-Zn Insulin (Baker 
et al., 1988) for which multiple isomorphous replacement 
(MIR)'phases are available at 1.9 A resolution and native 
protein data to 1.5 ,~ resolution. 

Optimizing phases for a system of Sayre equations 

For a given set of phase estimates the residuals of the 
associated set of Sayre equations are, 

r ( h ) = F ( h ) - [ O ( h ) / V ] ~ F ( k ) F ( h - k ) .  (2) 
k 

If the structure factors are considered as the basic 
variables then the terms of the Jacobian are, 

A(h, k) = ~$(h, k) - [20(h)/V]F(h - k), (3) 

where 8(h,k) is the Kronecker delta such that 
3(h, h) = 1 and 3(h, k) = 0, k -J= h. For sufficiently 
small changes, 

3r(h) -- ~ A(h, k)3F(k). (4) 
k 

Assuming that the linear approximation is valid the 
residuals may be eliminated by values of 8F(k) coming 
from the linear equations, 

A(h, k)SF(k) = - r (h) .  (5) 
k 

Premultiplying both sides by the Hermitian transpose of 
A gives, 

H(I, k)3F(k) = -)/(i), (6) 
k 

where, 

H(i, k) = ~ A(h, I) • A(h, k) (7) 
h 
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and, 

y(i) -- ~ A(h, I) • r(h). 
h 

Substituting (3) in (8) gives, 

(8) 

y(I) = r(l) - Y(I), (9) 

where, 

Y(l)=(1/V)~-~O(h)r(h)F(l-h). (10) 
h 

The factor of 2 in (3) does not appear in (9) because the 
summation in (10) is over a sphere of reciprocal space 
while A(h, k) includes only those reflections being 
refined, i.e., those in a hemisphere. If the total residual 
is defined by, 

R = (1/2) ~ '  Ir(h)l 2, (11) 
h 

then y(I) and H( I , k )  are its gradient and Hessian, 
respectively. 

The changes in the structure factors found by solving 
the linear equations modify both their magnitudes and 
phases. The change of phase for a general reflection of 
index k is found by taking the component of 6F(k) 
perpendicular to F(k). For a special reflection the 
component of 6F(k) along F(k), AF(k) ,  is considered. 
I f  IF(k)l + AF(k)  is positive the phase is not changed 
but if it is negative then the phase is changed by rr. This 
way of modifying phases works well in practice. 

Two methods have been tried for minimizing R. The 
Hessian, H, is strongly diagonal and the first approach 
was to use the diagonal approximation to (6). From (7) 
and (3) the diagonal elements of H are, 

D(I) = 1 - (4/V)IO(I)F(O) 
- ( l / V )  ~-~ 0(h) 2 F(I - h) 2~ (12) 

h ) 

and (6) reduces to, 

6F (!) -- - y(l) /D(I). (13) 

Another approach is that of steepest descent for which, 

~F(I) = -)~y(I). (14) 

Substituting (14) into (5), 

)~ ~ A(h, k)y(k) -- r(h). (15) 
k 

If we now write, 

Q(h) = ~ A(h, k)y(k), (16) 
k 

then the optimum ), is that which minimizes 

IAQ(h) - r(h)l 2. This gives, 

2= Re{~h Q(h),r(h)}/~ h Q(h) 2, 

and by the use of (8) it can be shown that, 

2 = ~ ly (h)12/~  IQ(h)l 2. (17) 
h h 

Substituting (3) into (16) we also find that 

Q(h) = y(h)-[20(h)/Vl~-~y(k)F(h-k). (18) 
k 

In this equation the factor of 2 is used if the k summation 
is over a hemisphere. It is not necessary if the summation 
is over the whole observed sphere in reciprocal space. A 
steepest descent step is the first part of the conjugate- 
gradient procedure and this we actually tried. However, it 
was found that it was better to use successive steps of 
steepest descent repeatedly. 

In the applications we have made so far (13) and (14) 
give similar results because D(I) lies approximately in the 
range 0.8-1.25 while 2 also has a value close to unity 
(see Tables 1 and 2). However, while D(I) is independent 
of phase, as can be seen from (12), 2 calculated from (17) 
is phase dependent. It has been found that this phase 
dependence does give a clear advantage in some 
circumstances. For example, when Sayre-equation re- 
finement is combined with some other techniques such as 
histogram matching or solvent flattening then values 
found for ). can differ appreciably from unity and the 
consequent phase improvement is better. 

Practical procedures 

The application of this approach is totally dependent on 
the use of FFT routines. The steps are as follows where 
FT represents either a Fourier transform or an inverse 
Fourier transform. 

(i) Using current phases a density map, p, is 
calculated. 

(ii) An FT of the square of this map gives 
G(h) = (1/V) ~-~k F ( k ) F ( h -  k). 

(iii) The values of r(h) are then found from 
F(h) - 0(h)G(h), where the values of 0(h) are expressed 
analytically. 

(iv) The FT of 0(h)r(h) gives a real-space function, or. 
(v) The FT of crp then gives the coefficients Y(I) in 

(10) which combine with r(l) to give y(l) in (9). 
(vi) The FT of y(k) gives a real-space function, ¢. 
(vii) the FT of 7tp gives the value of the summation in 

(18) from which the values of Q(h) may be found. 
Thus, a full treatment requires six FFT's per cycle. In 

fact two other FFT's could be used to give the 
summation in (12) but, since this is a phase-independent 
quantity, it needs to be carried out only once. In practice, 
we calculated this summation by assuming that 
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Table 1. Refinement of 23 853 phases of RNAp l at 1.17 ,~, 
resolution 

MPEI = mean phase error; WMPEI = E-weighted mean phase error; 
MPE2 = mean phase error for enantiomorph structure; MPEL = mean 
phase error for 1964 reflections with ]El > 1.4; M C C  = map 
correlation coefficient; 2 = value from equation (17). All phase errors 
are in . 

Cycle MPE1 WMPE1 
o 59.7 59.4 
1 52.7 5O.0 

2 50.2 47. I 
3 46.2 43.0 
4 42.0 38.O 
5 39.9 35.7 
6 39.2 35.0 
7 38.6 34.4 
8 39.2 35.O 
9 38.8 34.6 
10 39.5 35.3 
I I 39.1 34.9 
12 39.7 35.4 
13 39.4 35. I 
14 40.0 35.7 
15 39.6 35.4 
16 40.3 36.0 
17 39.9 35.7 
18 4O.5 36.2 
19 40.2 35.9 
20 40.7 36.4 
21 40.4 36.2 
22 41.0 36.7 
23 4O.7 36.4 
24 41.3 36.9 
25 40.9 36.7 

MPEL 
57.5 
38.9 
35.2 
31).1 
21.8 

9.4 
8.3 
8.0 
8.1 
8.0 
8.3 
8.2 
8.4 
8.4 
8.7 
8.6 
8.8 
8.8 
8.9 

19.0 
18.9 
19.1 
19.1 
19.3 
19.2 
19.4 

MPE2 MCC 2 
87.2 0.419 0.808 
85.9 0.571 0.687 
87.0 0.610 0.685 
86.7 0.661 1.088 
86.9 0.727 1.037 
86.9 0.755 1.044 
86.7 0.762 1.(}27 
86.8 0.770 1.025 
86.8 0.763 0.984 
86.8 0.768 1.029 
86.8 0.760 0.998 
86.7 (I.764 1.029 
86.8 I).758 1.000 
86.7 0.762 I.(}28 
86.8 0.755 1 .fK~) 
86.7 0.759 1.028 
86.8 0.752 0.998 
86.7 0.755 I.(}28 
86.8 0.749 0.999 
86.7 I).753 I.(}28 
86.8 0.747 I .(XX) 
86.8 0.750 1.028 
86.8 0.744 1 .(X)O 
86.8 0.747 I.(J28 
86.8 0.741 I.(X)I 
86.8 I}.744 1.027 

Table 2. Refinement of 11 414 phases of RNApl at 1.5 ,~, 
resolution 

The tabulated quantities are described in Table 1. The number of  
reflections for which IEI _> 1.4 is 1139. Only the first ten cycles are 
given. The pattern of  gradual phase degeneration thereafter is similar to 
what is seen in Table 1. The MCC relates to an ideal map at 1.17,~, 

resolution. All phase errors are in . 

Cycle MPE 1 WMPE i MPEL MPE2 MCC 2 
() .59.4 59.(} 56.5 86. I 11.292 0.672 
1 57.8 54.9 46.4 86.3 0.345 (I.881 
2 56.4 52.8 42.2 86.3 (}.371} 0.861 
3 56. I 51.9 39.4 86.0 I).382 1:004 
4 56.2 51.7 38.4 85.9 (I.386 0.991 
5 56.1 51.4 36.9 85.9 0.390 1.005 
6 56.3 51.5 36.7 85.9 0.390 I}.996 
7 56.5 51.5 35.5 85.9 0.391 1.006 
8 56.9 51.9 35.6 86.0 I).388 1 .(X)5 
9 57. I 51.9 35.2 86.1) I).388 1.007 
10 57.6 52.4 35.5 86. I 0.385 1.(~)6 

Results 

The first trial structure we used was RNApl  (Bezbor- 
odova et al., 1988). This has space group P2 with 
a = 3 2 . 0 1 ,  b = 4 9 . 7 6 ,  c = 3 0 . 6 7 A  and f l =  115.83 ° 
with Z = 2. The asymmetric unit contains 808 non-H 
atoms in the protein, including five S atoms and, in 
addition 83 water molecules. The data extend to a 
resolution of 1.17,~ and there are 23 853 independent 
reflections. In all our tests we started the refinement with 
a random mean phase error (MPE) imposed on the 
calculated phases. Our method of applying random 
MPE's is to produce a weighted mixture of  calculated 
phases, G,  with completely random phases, (/Or, by, 

~o = arctan{[w sin G + (1 -- w) sin G] 

X [ W C O S  (pc "-3 I- (1 - -  W)  COS~0r]  } . ( 1 9 )  

For w - -  1 the calculated phases are obtained while for 
w :---0 the final phases are completely random. It is 
difficult to choose a value of w to achieve a precise value 
of MPE but with experience one can get close to a target 
value. 

In giving the results of  our tests for RNApl  in Tables 
1 and 2 the column MPE1 gives the MPE for all the 
reflections and WMPE the E-weighted MPE. The 
column MPE2 gives the MPE for the enantiomorph 
structure. In investigations of methods the MPE alone 
can sometimes be misleading if the phases give a map 
with poor enantiomorph discrimination - by imposing a 
pseudo centre-of-symmetry, for example. This is re- 
vealed by similar MPE's for both enantiomorphs and we 
find both values as a matter of  course in all our 
investigations. Finally, we give the mean phase error, 
MPEL, for the subset of large magnitude reflections for 
which [El > 1.4. The value of  2 is given for each cycle 
and also MCC, the standard map correlation coefficient 
corresponding to the current phases. It should be noted 
that the MCC is always given relative to an ideal map 
with calculated phases corresponding to all the data 
available - even when the data set being refined is at a 
lesser resolution. Other workers prefer to compare their 
maps with ideal maps at the same resolution as the data 
which has been phased. The value of  the MCC is 
calculated from the phase errors using the formulae given 
by Lunin & Woolfson (1993). 

I F ( I -  h)l is independent of 0(h) and deriving 10(h)[ 2 
by analytical integration. 

There is an option in the program to use either 
sharpened F's  or E's, the normalized structure factors. 
For all cases examined so far results have been better 
with E's. If sharpened F's  are used then two Fourier 
transforms are required to give the values of  O(s), a 
function of  position in reciprocal space. One of  these is to 
calculate model density for a single atom and the other to 
transform back the square of  the model density. 

Test 1 

In this test all the data to 1.17A resolution were 
refined (see Table 1). The initial value of MPE1 was 
59.7 ° and after 25 cycles this had reduced to 40.9 ° . 
However, WMPE reduced from 59.4 to 37.5 ° so it is 
clear that the reflections with higher E values are most 
improved. This is also confirmed by the reduction in the 
value of  MPEL, the MPE for the 1964 reflections with 
E > 1.4, from 57.5 to 19.&. Although 25 cycles of  
refinement are shown it is clear that the total improve- 
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ment came in the first seven cycles as is seen both in the 
MPE and in the value of MCC, 0.770, which corresponds 
to a map of good quality for interpretation at 1.17 A 
resolution. After cycle 7 there is a slow deterioration in 
the results and one of the problems we have not yet 
tackled is to find out when to stop. However, there are 
figures of merit that might be effective, for example that 
proposed by Mishnev & Woolfson (1994). The variation 
in the value of 2 confirms what was stated above, that it 
has a value close to unity. 

Test 2 

This is similar to Test 1 except that it uses only the 
11 414 data to 1.5 ,~ resolution (see Table 2). It is clear 
that refinement is much less effective and again reaches 
the best position in seven cyt:les as judged by the value 
of the MCC, 0.391. While there has been a significant 
improvement of the MCC from its original value of 
0.292 if the MCC had ben related to the ideal map at 
1.5 ,~, then the MCC would have improved from 0.42 to 
0.57 but we think that the smaller numbers give a more 
realistic impression of the information content of the 
phase set. 

In an original version of this paper, when the algorithm 
we were using was somewhat less effective, there was 
very little improvement in the phases for RNApl at 1.5 ~, 
resolution and we stated that the Sayre equation seemed 
not to be effective at this resolution. A referee pointed 
out that we ourselves had stated that Sayre (1974) had 
refined rubredoxin at 1.5 ~, resolution and the referee 
also reminded us that Agarwal & Isaacs (1977) had 
successfully extended MIR phases at 1.9 ~, for insulin to 
1.5 A using a tangent-formula approach. This persuaded 
us that we should look again at our procedure both with a 
view to improving it and also to applying it to insulin. 

There were three changes we found which improved 
the results obtained. 

(i) We originally calculated normalized structure 
factors by the K-curve method which constrains (IEI 2) 
to be equal to unity within all spherical shells in 
reciprocal space. Now the Wilson plot is used to find 
temperature and scale factors for converting F ' s  to E's  
individually. For the IEl's found in this way the value of 
(IEI) 2 depends on the scattering angle. The values are 
closer to calculated values and more appropriate for 
inclusion in the Sayre equation. 

(ii) The complex quantity of 6F(h) is now projected at 
the end of each cycle as appropriate for special or general 
reflections. Previously we projected the gradient y(h) 
before calculating 2. 

(iii) We had originally, in error, included a factor 2 in 
(9). 

The structure of 2-Zn insulin (Baker et al., 1988) has 
space group R3 with a = 49.0,~, and ot R = 114.8 '~'. The 
asymmetric unit contains 806 non-H atoms, excluding 
solvent but including two Zn atoms. There are 6447 

Table 3. Phase extension and refinement Jor 2-Zn insulin 
with extended phases originally given random values. 

Results are shown for even cycle numbers  only. The MIR-phased set to 
1.9,~ resolution contains  6447 reflections and there were 6842 extra 

reflections to 1.5,~ resolution. All phase errors are in ~. Quanti t ies  
tabulated are: M P E M = m e a n  phase error [br MIR-phased set: 
M P E E =  mean phase error for extension set between 1.9 and 1.5 A 
resolution: M P E T = m e a n  phase error for all 13289 reflections; 
W M P E T = w e i g h t e d  mean phase error for all 13289 reflections; 

M P E L = m e a n  phase error for 1055 reflections with [El >_ 1.4: 
MCC = map correlation coefficient.  Values of MPE2 (see Table 1) 

are all > 86.1 . 

Cycle MPEM MPEE MPET W M P E T  MPEL MCC 
0 61.5 89.8 76.1 74.8 70.8 0.211 
2 58.7 80.3 69.8 67.8 62.4 (I.323 
4 57.8 76.3 67.3 64.7 57.5 (I.372 
6 57.3 74.0 65.9 62.9 54.5 0.4(11 
8 57.0 72.6 65.1) 61.8 52.7 (I.418 
1(1 56.6 71.7 64.4 61.1 51.8 (I.428 
12 56.4 71.1 64.11 60.6 50.9 I).435 
14 56.3 70.7 63.7 6(1.3 ~1.(1 0.44 I 
16 56.2 70.4 63.5 611.(I 49.4 (I.445 
18 56.2 70.2 63.4 59.9 48.7 (I.448 
2(1 56.3 7(I.(I 63.4 59.7 48.3 (I.45 I 
22 55.9 69.8 63.11 59.3 47.3 (I.459 
24 55.4 69.4 62.6 58.7 46.(I (I.468 
26 54.9 69.1 62.2 58.2 44.0 (I.477 
28 54.8 68.8 62.(I 57.7 43.1 0.486 
3(1 55. I 68.5 62.(I 57.4 41.4 0.494 
32 55.6 68.3 62.1 57.3 40.(I 0.499 
34 56.2 68.2 62.2 57.3 39.4 (J.5(~1 
36 57.2 68.1 62.8 57.7 38.4 0.498 
38 58.5 68.1 63.4 58.2 38.3 0.494 
411 59.9 68.1 64.1 58.8 38.4 0.487 

reflections to 1.9 ,~, resolution, for which MIR phases are 
available, and 13 289 reflections for the native protein to 

o 

1.5 A resolution. For these results we give at each cycle 
MPE's for the MIR set, MPEM; for the extended set, 
MPEE; for the total set, MPET; E-weighted for the total 
set, WMPET, and for the subset with IEI > 1.4, MPEL. 

Test 3 

The MIR phases which were available to us for the 
1.9,~ data had a MPEM of 61.5 ~ rather than the much 
lower value of 52 ~ which was reported by Agarwal & 
lsaacs (1977). The first approach we tried was the simple 
one of starting with MIR phases for the 1.9 A data and 
random phases for the 6842 reflections between 1.9 and 
1.5 ,~,. We adopted the usual scheme of combining new 
phase estimates, ~pnew, with MIR phases, ~0Ml r ,  SO that 
the phase taken forward to the next cycle of refinement 
is, 

~p = phase of [WMI R exp (iqgMlr) 

+ ( 1 -- WMIR) exp (iqgNEW) ], (20) 

where WMI R is the weight from the MIR phasing 
procedure. However, after 20 cycles of refinement we 
relaxed the MIR weighting according to the cycle 
number, n, so that the weight given to the MIR phases 
w a s ,  

w~l R = WMl R X [(40 -- n)/20], (21) 
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Table 4. Phase extension and refinement for 2-Zn insulin 
with extended phases given values derived from the 

square of the MIR-phased map 

All quantities given are as in Table 3. 

Cycle MPEM MPEE MPET WMPET MPEL MCC 
0 61.5 70.8 66.3 63.4 52.6 0.395 
2 57. I 69.9 63.7 60. I 47.5 0.447 
4 56.2 68.5 62.6 58.8 45.7 0.467 
6 56.0 67.8 62. I 58.2 45.2 0.474 
8 55.8 67.3 61.7 57.9 44.9 0.478 
I 0 55.8 67. I 61.6 57.7 44.6 0.48 I 
12 55.8 67.0 61.6 57.7 44.5 0.483 
14 55.7 66.8 61.4 57.5 44.4 0.485 
16 55.7 66.7 61.4 57.4 44. I 0.487 
18 55.8 66.5 61.3 57.4 43.9 0.487 
20 55.8 66.5 61.3 57.4 43.8 0.488 
22 55.2 66.4 61.0 57.0 42.9 0.495 
24 54.6 66.3 60.7 56.5 41.9 0.502 
26 54.2 66.2 60.4 56.1 40.9 0.509 
28 54.1 66.1 60.3 55.8 39.9 0.515 
30 54.4 66.11 60.4 55.6 39.0 0.520 
32 54.8 65.9 60.5 55.6 38.3 0.523 
34 55.3 65.9 6(I.7 55.7 37.9 0.523 
36 55.9 66. I 61.2 56. I 37.6 0.520 
38 57.2 67.0 62.2 57.0 37.8 0.509 
40 58.6 67.0 62.9 57.7 38.0 0.502 

up to n = 4 0 .  As will be seen from Table 3 this 
accelerated the improvement in phases after cycle 20 and 
the best phases, according to the MCC value (0.500) 
were obtained in cycle 34. Because of the very different 
starting points it is not straightforward to compare the 
result of this refinement with that of Agarwal & Isaacs 
(1977). Their final MPE for the whole data set was 3 ° 
greater than for the original MIR phases while in Table 3 
it is only 0.7 ° higher. As far as can be assessed the two 
approaches give a comparable performance. 

Test 4 

This was similar to test 3 except that the startin~ 
phases for the reflections between 1.9 and 1.5A 
resolution were obtained by Fourier transformation of 
the squared 1.9,~, map. This is equivalent to finding 
initial phase estimates for the extended reflection data 
from the tangent formula using only MIR phases on the 
right-hand side. It will be seen from Table 4 that not only 
is the starting point of the refinement a better one but that 
a better final MCC (0.523) is obtained, again in cycle 34. 
For this approach the total MPE is 0.8 ° less than the MPE 
of the original MIR phases. 

Concluding remarks 

From our results we conclude that the Sayre equation on 
its own is an effective tool for phase refinement if used 
with a complete data set at about atomic resolution 

(1.5 ,~,) or better. Trials at lower resolutions show that not 
much benefit is available. This does not fly in the face of 
the conclusion by Shiono & Woolfson (1991) that 
Sayre's equation holds reasonably well for low resolution 
and with unequal atoms; one must distinguish the 
approximate validity of the equation from its ability to 
constrain phases towards their correct values. For a 
complete data set at atomic resolution or better the 
equations are well conditioned and can be used as a 
useful phasing tool on their own but the conditioning 
quickly degenerates as the resolution is reduced. 

Where Sayre's equation does come into its own, even 
at well below atomic resolution, is when it is used as a 
constraint on phases in conjunction with other phase 
refining processes, as used by Zhang & Main (1990b) in 
their SQUASH procedure. We have found that inclusion 
of a Sayre-equation refinement stage may even make the 
phases worse in terms of MPE but better in terms of the 
ability of another process to take over the refinement. 
There is some element of conditioning the set of phases, 
which we do not completely understand and which we do 
not know how to describe, which comes about from 
applying Sayre's equation and makes it a valuable 
refinement tool even well outside the range of its stand- 
alone validity. 

This paper owes much to the helpful comments of a 
referee of the original version and we take pleasure in 
acknowledging that assistance. We also wish to express 
our gratitude to the Science and Engineering Research 
Council for the support of this and related work. 
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